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1. INTRODUCTION

We consider properties of certain approximate solutions of Fredholm
integral equations of the first kind. Consider the equation

u(t) = Is K(t, s) z(s) ds, t E T, (1.1)

where S, T are closed, bounded intervals of the real line, K(t, s) is a given
kernel on T X S with appropriate properties, and u(t) is known only for
tELl = {t1 , t2 , ..., tn}, where t1 < t2 < ... < tn, [t1 , tn] = T.

Letting u(ti) = Ui' we take as an approximate solution the function z
which satisfies

i = 1,2,... , nUi = Is K(ti , s) z(s) ds,

and minimizes a quadratic functional J(z) of the form

J(z) = II R-1I2
Z 11~2 '

(1.2)

(1.3)

where R-1/2 is a densely defined, unbounded linear operator on ~(S) to be
selected from a certain general class, and 1/ • /Iz is the norm on ~(S).

2

To define R-1/2, let R(s, Sf) be a continuous, symmetric positive definite
kernel on S X S. Then, by the theorems of Mercer, Hilbert, and Schmidt
[8, pp. 242-246], the operator R, defined by

(Rf)(s) = Is R(s, u)f(u) du, fE ~(S), (1.4)
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has an ~(S)-complete orthonormal system of eigenfunctions {CPX:l and
corresponding eigenvalues {'\"}:'1 with ,"" > 0 and L:l ,\2 < 00. R(s, s') has
the uniformly convergent Fourier expansion

00

R(s, s') = I A.cpls) CP.(s').
.=1

Let (., .) be the inner product in ~(S). ForIE ~(S), we have

(1.5)

00

I = I /"CPv> /" = (f, CP.),
.~1

00

RI = I A./"cp. ,
v=1

v = 1,2,... ,

and we may define the symmetric square root R-l/2 of R-l by

R-l/21' - ~ --.£-. ,/.
J - :=1 (>,.)1/2 '/'. ,

for any I E ~(S) for which

00 1'2

I J~ < 00,
v=1 v

in which case,

00 1'2

I J~ = II R-lI~llh .
v=1 v

Let

(1.8)

(1.9)

and let R s , for s fixed, be that function on S whose value at s' is given by

R.(s') = R(s, s'). (1.10)

The following facts about -*'R may be verified by elementary methods,
with the aid of (1.5):

(i) ~ is a Hilbert space with inner product <., .)R given by
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(ii) Rs E~ , Vs E S;

(iii) <Rs, Z)R = z(s), Z E Jr'R , S E S.

Note that, for Z E Jr'R ,

II R-l/2Z 11.2'2 = II Z IIR ,

169

(1.11)

where I[ 'IIR is the norm in Jr'R .
Properties (ii) and (iii) show that Jr'R is a reproducing kernel Hilbert space,

(RKHS) with reproducing kernel R(s, s'). See, for example, Aronszajn [2],
Yosida [15], Parzen [6], and Kimeldorf and Wahba [5] for further discussion
of RKHS's and their uses.

The linear functional which, for fixed s* E S maps Z E Jr'R into z(s*) is
continuous in Jt"R , as a consequence of (iii) and the Riesz representation
theorem. Conversely, if Jr' is any Hilbert space of functions for which the
linear functionals,

(1.13)

are continuous for every s* E S, it is known that there exists a unique sym
metric positive definite kernel R(s, s') satisfying (ii) and (iii). To see this, note
that, by the Riesz representation theorem, there exists gs* E Jr' with the
property

(1.14)

Then, let

(1.15)

R(s, Sf) of (1.15) is not required to be a continuous function of sand s' on
S X S. In this note, however, we always assume continuity. This assumption
entails that~ C CO(S), where CO(S) is the continuous functions on S, by the
inequalities

Iz(s) - z(s + €)I = I<z, Rs - Rs+.)R [ :::;; II z IIR [I Rs - Rs+< IIR

= II Z IIR (R(s, s) - 2R(s, s + €) + R(s + €, S + €»1/2.

As an example of an RKHS, let L m be an mth order linear differential
operator with an m dimensional null space. Let Gm(s, u) be the Green's
function for the problem

1<·)(0) = 0, v = 0, 1,2,... , m - 1,

(1.16a)

(1.l6b)
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and let R(s, s') be given by

R(s, s') = rGm(s, u) Gm(s', u) duo
o

Then,

.noR = {f:f<vl(O) = 0, v = 0, 1,... , m - 1,

j<m-1l absolutely continuous, LmfE ~[O, I]}

and the inner product in .noR is given by

<f, g>R = r (Lmf)(u)(Lmg)(u) duo
o

(Ll7)

(Ll8)

Examples of RKHS's, where boundary conditions such as (Ll6b) are not
imposed, may be found in [5], see also [6; 14] for further examples.

If A is a continuous linear functional on an RKHS with kernel R(s, s'), then

Az = <"I, Z>R ,

where TJ is given by

Thus, knowledge of the reproducing kernel R(s, s') for .noR allows the
explicit construction of the representer of any continuous linear functional.

Returning to the discussion of (Ll), we suppose R has been selected, and
that K has the property that the family of linear functionals {At, t E T} defined
by

Atz = Is K(t, s) z(s) ds,

are all continuous in .noR , and linearly independent.
Then, (1.2) may be rewritten

i = 1,2,... , n, (Ll9)

where TJt; E .noR is defined by

TJt(s) = Is K(t, u) R(s, u) du S ES, (1.20)

with t = ti .

The previous assumption of linear independence is plausible, since other
wise there would exist constants {ci}7_1 , with

"L CiTJt, = 0,
i=l



and then

APPROXIMATION TO INTEGRAL EQUATIONS

(~ Ci'Y)t i , Z)R = tl Ci Is K(t;, s) z(s) ds = 0,

17l

for every Z E -*'R .
Let V" be the (n-dimensional) subspace of -*'R spanned by {'Y)t, tELl},

and let Pv be the orthogonal projection in -*'R onto Vn • If z is an arbitrary
element i; -*'R satisfying (1.19), then z = Pv z satisfies (1.19) also and
minimizes the norm II z IIR among all such solutio~s. The element Pv z, being
an element of Vn , can be solved for explicitly from (I .19), and is gi;en by

where Q" is the n x n matrix with i, jth entry given by

Q(t, t') = Is Is K(t, s) R(s, s') K(t', s') ds ds'.

(I.22a)

(I.22b)

Q" is nonsingular by the presumed linear independence of the {'Y)t , tELl}.
Let .Ai'(K) be the null space of K in -*'R (possibly the °element) and let

V = .Ai'~(K) (in ~). Then, by definition,

°= Is K(t, s) z(s) ds,

Equation (1.23) may be written

t E T, Z E -*'R =;> Z E .%(K). (1.23)

tE T, (1.24)

Thus, {7Jt , t E T} span V.
If R(s, s') is continuous on S X S, then -*'R is separable. Suppose that

Q(t, t') = <'Y)t ,'Y/t->R is continuous for (t, t') E TXT, then {'Y/t, t rational,
t E T} is dense in the set {'Y)t, t E T}. Let Pv be the projection operator in £R
onto V, and let

It then follows that

1/ .111 = m;lx(ti+l - t;).,

lim IIPvz - PyzIIR = 0,
11.<111-->0 n

(1.25)

(1.26)

for any fixed z E ~. (Obviously we possess no information concerning
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Z - PvZ E %(K).) It appears that no rate holding uniformly for Z E £R can
be found for (1.26). In this note we investigate the convergence rates of
II Pvz - Pv Z IIR and I(Pvz)(s) - (Pv z)(s)1 for Pvz in a certain dense subset
of £R' n' n

To study I(Pvz)(s) - (Pv Z)(S) I, it will be convenient to use the fact that
n

I(Pyz)(S) - (Pynz)(s)! = I<Pyz ~ Pynz, PyRs - PynRS>R I

~ II Pyz - Pynz lin II PyRs - PynRs IIR

~ II Pyz - Pynz lin II R s - PynRs lin. (1.27)

The approximate solution (1.21) is not, in general, the most appealing
for computational work, since Qn will become poorly conditioned as
(ti+1 - ti) -+ 0 if Q(t, t') is smooth. We study properties of the approximation
(1.21), however, because of its close relationship to the approximate solution
given by the method of regularization (see Eq. 1.28), which has been discussed
and also investigated numerically by a number of authors. See Phillips [7],
Tihonov [11,12], Tihonov and Glasko [13], Ribiere [9], Strand and
Westwater [10], Wahba [14], and Hunt [3]. However, there seems to be a lack
of general theoretical results concerning the rate of convergence of these
approximate solutions.

The approximate solutions given by the methods discussed by the authors
above are (except for discretization) equivalent to finding Z E £R to minimize

n

L (ui - <nt;, z> R)2 + A II Z II~ ,
i~1

(1.28)

where Ais a parameter to be chosen. The solution z to this problem is given by

z(s) = (7]t/s), 7]t
2
(s), ... , 7]t

n
(s»(Qn + A1)-1 (Ul , U2 , ... , un)" (1.29)

In [7; 11; 12], II Z [I~ is defined by some special case of the example of (1.18),
with good numerical results presented for m = 2. There doesn't seem to be
any obvious guideline for the choice of R, other than the observation that
one would like the £R norm of the unknown solution to be small.

We will use the notations K, K*, and Q for the operators defined by

(Kf)(t) = t K(t, s)f(s) ds,

(K*f)(s) = t K(t, s)f(t) dt,

(Qf)(t) = IT Q(t, t')f(t ' ) dt',

Note that Q = KRK*.

t E T, fE ~(S),

S E S, fE ~(T),

t E T, fE ~(T).

(1.30)
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The main Theorem of this paper follows.

THEOREM. Let Z E.n"R have the property that

PvZ E RK*{~(T»,

or, equivalently,

u = Kz E KRK*(~(T) = Q{~(T»,

173

(1.31)

and suppose that Q(t, t') satisfies

(i) (ol/ot l) Q(t, 1') exists and is continuous on TXTfor t =1= t', (1.32)

1= 0, 1,2, , 2m, (ol/ot l) Q(t, t') exists and is continuous on TxT for
1= 0, 1,2, , 2m - 2;

(ii) Iimttt' (82m-I/ot2m-I) Q(t, t') andlimw' (02m-l/ot 2m- I) Q(t, t') (1.33)
exist and are boundedfor all t' E T.

Then,

Using (1.20), it is seen that (1.3I) is equivalent to

(Pvz)(s) = IT 7Jt'(S) pet') dt',

(1.34)

(1.35)

for some p E ~(T). It will be shown later (Lemma 2 et. seq.) that, if Q{t, t')
is continuous, then RK*(~(T» C V and is dense in V in the ~ norm.

An obvious and useful corollary follows.

COROLLARY. Let z E.n"R , ifi E RK*(~(T», then

I(z, ifi>R - (Pynz, ifi>R I = I(z - Pvnz, ifi - PYnifi>R I

~ II Z IIR II ifi - Pvnifi IIR = 0(/1 Lfllm). (1.36)

As an example of the application of this Corollary, suppose it is desired
to approximate (z, ifi>R for given ifi, knowing {u(ti)}f=I' The approximation
may be taken as (Pv z, ifi>R , and the convergence rate of (1.36) for the
approximation to (z, J>R' then obtains irrespective of conditions on z.

A useful special case is

(z, ifi>R = Is w(s) z(s) ds, (1.37)
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for which
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(1.38)if;(s) = Is R(s, s') w(s') ds' = (Rw)(s).

If only w E K*(~(T)), then if; E RK*(~(T)).

Section 2 is devoted to the proof of the theorem and associated lemmas.
In certain very special examples the rate of convergence of II R s - Pv R s IIR
in (1.27) may also be found. Section 3 is given over to an example. The ~esult
there is equivalent to well known results in the convergence of derivatives of
spline function approximations. It appears, however, that further results
along this line depend rather delicately on detailed properties of K and R.

2. PROOF OF THE MAIN THEOREM

It will be convenient to define an auxiliary Hilbert space £'0 . We let £'0
be the reproducing kernel Hilbert space with reproducing kernel Q(t, t'),
t, t' E T defined by (1.22b), and inner product <', ')0' Let Qt be that element
of £'0 whose value at t' is given by

Qt(t') = Q(t, t'),

and let Jf;. be the subspace of £'0 spanned by the elements
"

Let PT be the projection operator in £'0 onto £'T .
" n

LEMMA I. Given Z E £'R let u be defined by

(2.1)

u(t) = <Tjt, Z)R ,

Then u E £'0 and

tE T. (2.2)

II Pvz - Pv"z IIR = II u - PTnu 110'

Proof. Since

t, t' E T (2.3)

and {Qt, t E T} span £'0' there is an isometric isomorphism between -'f'o
and V generated by the correspondence ",.....,,",

t E T. (2.4)
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Obviously,

under this isomorphism. Furthermore, since for Z E £R ,

we have

PVZ"""" u,

and

and, hence,

This completes the proof of Lemma 1.

LEMMA 2. Suppose Z has a representation

Z(s) = IT 1]t:(s) pet') dt',

175

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

for some p E ~(T), where 1]tCs) is defined by (1.20).1 Then Z E V and Z ,......, u
under the correspondence",......," of (2.4), where

u(t) = IT Qt(t') pet') dt'. (2.10)

Proof It is sufficient to prove the result for p continuous, as follows.
Suppose {Pv}:'l is a sequence of continuous functions converging (in the
~ norm) to p E ~. Then, uv , given by

uv(t) = IT QtCt') pv(t') dt',

is in £0 , and corresponds to Zv , given by

ZvCs) = IT w(s) pvCt') dt'.

Then, Uv converges pointwise uniformly and, hence, strongly in £0 to u.
Similarly Zv converges strongly in V to z and z ,......, u.

1 That is, z = RK*p, p E .!l'2(T).
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Now, let p be continuous and let ilL = {tH, t2L ,... , td, 1= 1,2,... be a
sequence of partitions of T, such that, for every t, the Riemann sums for ilL
for the integral

IT Q{t, t') p{t') dt'

converge.
Then Z(L) , I = 1,2,... defined by

L-l

Z(L)(s) = L 'YJtis) p{tJL)(ti+l.L - tjL),
j=1

1= 1,2,...

(2.11)

(2.12)

is a Cauchy sequence of elements in V, which converge pointwise to z(s) of
(2.9) and u(z) , I = 1,2,... defined by

(2.13)

is a Cauchy sequence of elements in Jt"Q which converge pointwise to u(t)
given by (2.10). But by (2.5) Um ,....., Zm so we must have U ,....., Z with u and Z

defined by (2.9) and (2.10), thus, completeing the proof of Lemma 2.
Incidentally, Lemmas 1 and 2 may be used to show that RK*(~(T» is

dense in V (in the Jt"R-norm). To see this, note that it is only necessary to
show, that, for each t* E T, and every E > 0, there exists p' E ~(T) such that
X· = RK*p' satisfies

II 'YJt_ - x'IIR ~ E.

Now

res) = (RK*p')(s) = IT 'YJtCs) pE(t) dt

and so, by Lemmas 1 and 2,

II 'YJt_ - x'IIR = II Qt- - y'lIo,

where

Y'(t) = t QtCt') p'(t') dt'.

But

(2.14)

(2.15)

(2.16)

(2.17)

II Qt- - Y'II~ = Q(t* , t*) - 2 IT Q(t*, t') p·(t') dt'

+ IT IT p·(t) Q(t, t') p·(t') dt dt', (2.18)
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and it is obvious that if Q(t, t ') is continuous on TXT, then there exists a
p' E ~(T) such that the right hand side of (2.18) is ~ e2•

We now proceed to the prove the theorem.

Proof of theorem. By Lemmas 1 and 2 it is sufficient to prove

(2.19)

where

u(t) = IT Qt(t') p(t ') dt'.

We actually show that

II u - PTnu 110 ~ (6m)m (C1(tn - t1) + C2)1/2 [!r p2(t)dtr2

11 Llllm, (2.20a)

where

C1 = (1 + 2mem) sup 1_1_ 02m Q(I:. 1:.1)1
ue (2m)! o~m s,s ,

e.eET

I
1 o2m-1 .

C2 = 2(1 + 2mem) sup -- Q(I:. 1:.1)1
M'ET (2m - I)! og2m-1 S,5,

em = [3(2m - 1)]2m-l,

(2.20b)

(2.2Oc)

(2.20d)

and it is understood that if (o2m-1jog2m-1) Q(g, f) is undefined the maximum
of the left and right absolute derivative is taken.

If uis any element in Jf1'Q of the form

il = ~ Qtj IT Ci(t) p(t) dt,
•

then, since u eJf1'r ,we have
n

(2.21)

(2.22)

The proof proceeds by finding a set of functions {ci(t)}f_1 so that II u - uII~

with udefined by (2.21) is bounded by the right hand side of (2.20a).
Without loss of generality we assume that

(2.23)

No generality is lost, because we may delete elements from Ll without
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reducing the right hand side of (2.22). From any set Ll with mesh norm II Llil
we can always choose a subset Ll' with property (2.23), and

II Ll' II :(; 311 Llil (2.24)

by dividing the interval T into successive subintervals of length II Lltl and
selecting exactly one t i from every other subinterval. We assume this has been
done and the set Ll', which we will relabel Ll = {t1 , t2 , ••• , tn }, has mesh norm
bounded by 311 Llil.

Now, since u satisfying (2.10) satisfies

it follows that

<U, u>Q = tIT pet) Q(t, t') pet') dt dt',

<u, Qt,>o = u(ti) = IT Qti(t) pet) dt,

(2.25)

(2.26)

Ilu - ull~

= IT t p(t)p(t') <Qt - i~ Ci(t) Qt;, Qt' - tl Cj(t') Qt1) 0 dt dt'. (2.27)

Without loss ofgenerality suppose n = N(2m - 1) + 1 for some integer N.
To simplify the notation, let

k = 0, 1,2'00" N - 1, i = 1,2'00" 2m.

(Note that tk,2m = tk+l,l)' Let I k be the interval

k = 0, 1,2'00" N - 1.

For t E I k , we will approximate Qt by that linear combination of

which corresponds to Lagrange (polynomial) interpolation of degree 2m - 1.
More precisely, let

2m 2m

Pk,i(t) = n (t - tk,v)/n (tk,i - tk,J,
v=l v=l

v"pi v"pi

= 0,

k = 0, 1,2'00" N - 1,

i = 1, 2,... , 2m.

(2.28)



APPROXIMATION TO INTEGRAL EQUATIONS

For t E I k , t' Ell, set

2m

= Qt,(t) - L hlt') Qtl,;(t)
j~1

179

(2.29)

We want to use the Newton form of the remainder for Lagrange inter
polation, [4, p. 248]. For any f(t), t E I k ,

2m 2m

f(t) - L Pk.i(t)f(tk.i) = n (t - tk.i)f[tk,l, tk•2,... , tUm, t], (2.30)
i=1 i-I

where f[tk,l , tk.2 ,..., tk.2m , t] is the 2mth order divided difference.
Using (2.30) with f(t) = Qt,(t) - L~:'I ptAt') Qtl.;(t), the right hand side

(r.h.s.) of (2.29) is seen to be equal to

2m Ir.h.s. (2.29) = n (t - tk.i) Qdtk.l , tk.2,... , tk.2m , t]
i~1

(2.31)

For any f, we know that if/has 2m continuous derivatives in Ik , then

(2.32)

for some gE I k . If we only know that f(2m-l)(t) is continuous except for a
finite number of finite jumps, then we may write the 2mth order divided
difference as a divided difference of two 2m - l-st order divided differences,

1
j[tk.1 , tk.2 ,... , tum, t] = (t _ t ) {f[tk.1 , tk.2 ,... , tUm-I' t]

k.2m k.1

- f[tk.2 , tk.3 ,... , tk,2m , tl}, (2.33)
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and know that the term in brackets in (2.33) is bounded in absolute value by
2 SUPtel

k
1[1/(2m - 1)!]j(2m-1)(t)I.

By (2.23) and (2.28),

em = [3(2m - 1)]2m-1. (2.34)

Therefore, for t E Ik , t' E Iz , k =1= I, we use (2.32) and have the following
bound on the right hand side of (2.31):

I r.h.s. (2.29)1 = I r.h.s. (2.31)1

~ (tk.2m - tk.1)2m (l + 2mem) sup 1_1_ a2m
Q(g t)1

ee~ (2m)! ag2m '
eel,

~ (tk.2m - tk.1)2m C1 , t E I k , t' E I z , k =1= 1 (2.35)

where C1 is given by (2.20b).
For t, t' E I k , we use (2.33) and have the following bound:

I r.h.s. (2.29)1 = 1r.h.s. (2.31)1

t, t' E I k , (2.36)

where C2 is given by (2.20c) and where it is understood that if
(a2m-1/ag2m-1) Q(g, f) is undefined the maximum of the left and right
absolute derivative is taken. Thus, using (2.27), (2.29), (2.31), (2.35), and
(2.36),

N-1

II u - i111~ ~ C1 L (tk •2m - tk.1)2m J J 1p(t)1 I p(t')J dt dt'
k,Z=O Ik I,
k .pz

N-1

+ C2 L (tk.2m - tk,l)2m-1 J J J p(t)1 I p(t')1 dt dt'. (2.37)
k=l ~ I k

Since

[ ]
1/2J I p(t)1 dt ~ (tk •2m - tk.J1/2 J p2(t) dt ,

~ ~

(2.38)



(2.37) becomes

APPROXIMATION TO INTEGRAL EQUATIONS 181

\ N-l 1/2

~ [S~P(tk.2m - tk.1)2m] lC1 k~O (tUm - tk.1)1/2 [t
k

p2(t) dt]

k¥cl

3. BEHAVIOR OF II R s - P V"R.IIR

We consider only a special example here. It will appear from the discussion
that .a general theorem is unavailable without further detailed assumptions
concerning K(t, s).

Let S = [0, I], T = [0, 1], and let

(t - S)~l
K(t, s) = (l- I)! (u)+ = u, u? °

= ° otherwise,

(3.1)

1 some integer. Then, since K is the Green's function for the operator L,
defined by

Lu = u(l),

with boundary conditions U(pl(O) = 0, v = 0, 1,2,...,1- I, we have

z = u(l),

as the solution of (1.1).

(3.2)
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It follows that
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, 1 (S - U)~-1 (S' _ U)~-1

R(s, s ) = t (k_ I)! (k _ I)! dUo

_ .1 (t - U)'~-1 (S - U)~-1

'l}t(S) - t (m - 1)' (k - I)! du,

, 1 (t - U)'~-1 (t' - U)':'-1
Q(t, t ) = I

o
(m _ I)! (m _ I)! du,

(3.3)

(3.4)

(3.5)

with k + 1= m.
In this example, Jlt"R = {z: z(v)(O) = 0, v = 0, 1,2,... , k - I, Z(k-1) abso

lutely continuous, Z(k) E L 2[0, I]},

(3.6)

and Jlt"o = {u: u(v)(O) = 0, v = 0, 1,2,... , m - I, u(m-1) absolutely con
tinuous, u(m) E L 2[0, I]}, with

If, in general we view the operator K, defined by

(Kz)(t) = IT K(t, s) z(s) ds,

as an operator from V to Jlt"o , it is 1:1 invertible and

(3.7)

(3.8)

(3.9)

Returning to the example, the solution to the problem: Find UE Jlt"Q ,

satisfying2

u(ti ) = Ui, i = 1,2,... , n (3.10)

to minimize

II u II~ = r[u(m)(t)]2 dt,
o

2 To avoid trivial difficulties, let t1 > O.
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(u = PT u, where U E £0 is any element satisfying (3.10).)
The s;lution to this problem is well known to be the (unique) polynomial

spline of interpolation to u(t), tELl, of degree 2m - 1 and continuity class
C 2m- 2, and satisfying the boundary conditions for elements of £0 . Here,

(3.12)

and it is easily verified that

(3.13)

In this example, u having a representation of the form (2.10) implies that

(3.14)

v = 0, 1, 2, ... , m - 1.

Thus, Pv z is the Ith derivative of a polynomial spline function of degree
2m - 1 int~rpolating to a function U E C2m. Such approximants are well
known to have convergence rates ~ 0(11 L1112m-I-l/2), where k + I = m.
See [1].

By (1.27) and the theorem, II R s - P v Rs IIR = 0(11 L1fl k - 1 /2) would insure
the above result, namely n

Iz(s) - (Pvnz)(s)1 ~ 0(11 L1llm+k-l/2). (3.15)

A proof that II R s - Pv R s fiR = 001 L1llk - 1 / 2) for general K and R as in (3.3)
might begin by writing n

(3.16)

i
1 [ (s - U)~-1 n i1 (v - u)~-1 ]2

= 0 (k - I)! - i~1 dies) 0 K(ti , v) (k _ 1)! dv du,

where, for fixed s, the {d;(s)} are constants to be found.
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To continue a proof, assume K is such that K(t; , v) = °for v > ti . Then,
for S E [ti , tHm'] we have, for any m',

I r.h.s. (3.16)1

I

ti [(s - U)~-l m' ItHv . (v _ u)~-l ]2
:::;; 0 (k - I)! - v~o dH.(s) 0 K(ti+v, v) (k _ 1)! dv du

ti+m' (S _ U)~-l m' Iti+V (v _ U)~-l 2

+ f
ti

[(k - 1)! - v~ dH.(s) 0 K(tHv, v) (k _ I)! dV] dUo

(3.17)

If K(t, v) = [(t - V)~-l/(/ - I)!], then

I

ti (v - U)~-l d _ (ti - uX:-1

o K(ti' v) (k _ I)! v - (m - I)! ' (3.18)

and the integrand in the first term on the right in (3.17) is the square of a
polynomial of degree m - 1 in U. Set m' = m - 1 and let qi,v(S) be the
polynomial of degree m - 1 with

v = ()

v =f. ()
v, () = 0, 1,2,... , m - 1. (3.19)

Letting

v = 0, 1,2,... ,m - 1,
otherwise,

(3.20)

the integrand in the first term on the right hand side of (3.17) is then identically
zero, and, assuming (2.23), it is not hard to prove that the second term on the
right hand side of (3.17) is bounded by Dm(tHm-1 - ti)2k-l, where Dm
is a constant. Thus, II R s - Pv R s IIR = 0(11 Llllk-I/2). This approach to
a proof clearly breaks down in"general, however, unless the polynomial
p(u) = (s - U)k-l, UE [0, til is in the linear span of the m' + 1 functions of u
on [0, til,

I
ti+V (v - U)~-l

o K(ti+v, v) (k _ I)! dv, U E [0, til, v = 0, 1,2,... , m'. (3.21)
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